

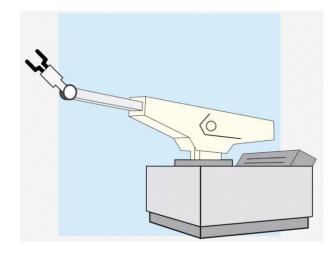
RIS Industry 4.0 Hubs

Robots & Co-bots

EIT Manufacturing is supported by the EIT, a body of the European Union

27 May 2021

Contents


- Introduction
 - Industrial Robots
 - Collaborative robots or Co-Bots
 - Safety issues
- Indicative applications
- Challenges
- Outlook

Industrial Robot

- Comes from the Czech word "robota", denoting forced labour or serf
- First used in story published in 1942 by Isaac Asimov
- First industrial robot came into existence in 1956 by George Devol

Unimate robot (U.S. Patern 2,988,237)

Industrial Robot

A programmable multi-function machine

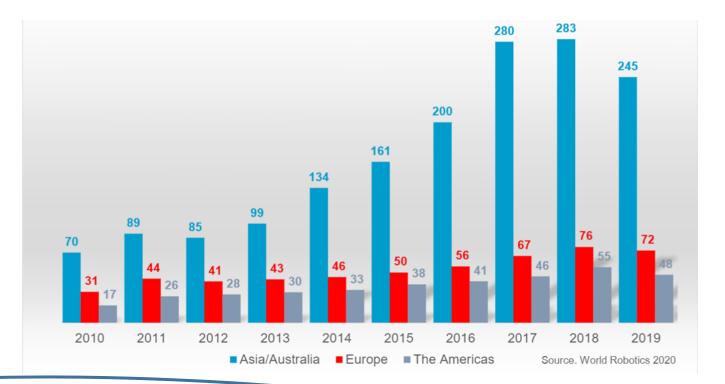
- Lead through programming
- Programming languages
- Simulation and offline programming
- Consists of a number of rigid links, moved by a motor and controlled by a PLC.

Capable of performing a variety of tasks

Advantages

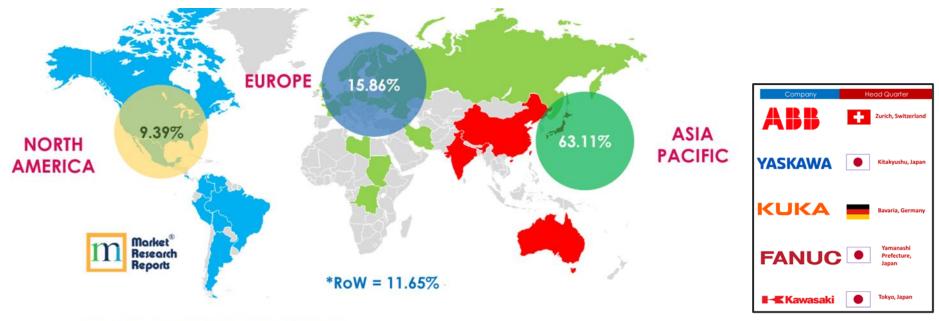
- Programmable
- Fast
- Consistent
- Precise
- Reduced product damage
- Suitable for hazardous environments
- Lower labour costs

Disadvantages


- Investment cost
- Maintenance
- Energy consuming
- Autonomous operation

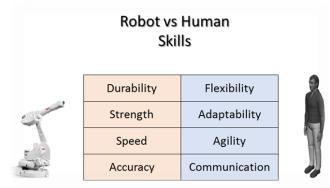
5

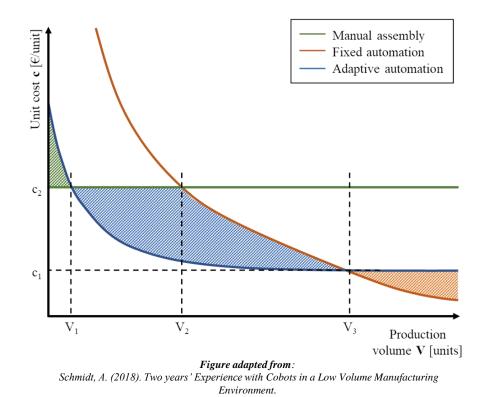
- Reduced adaptability
- Safety issues
- Replacing humans



Annual installations of industrial robots

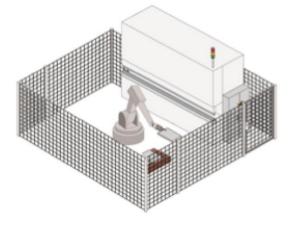
Industrial robotics market share by geography

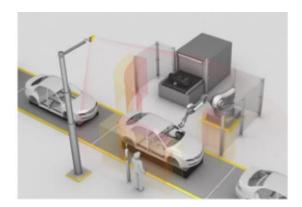

Note : The 2019 Market Shares are Estimated. *Row = Rest of the World



Industrial Automation

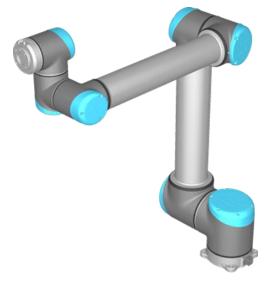
 Robots are not profitable for small assembly lots or changing products



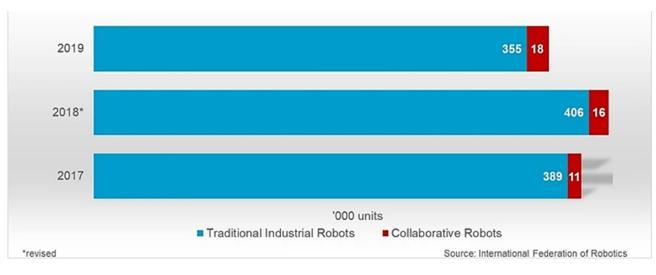

LMS Laboratory for Manufacturing Syste & Autometion

Human Safety

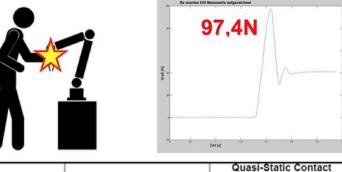
Industrial robots operate (usually) in isolation



Collaborative Robots


- Designed to safely interact with humans in a shared workspace
- Force-limited joints and computer vision to detect the presence of humans in their environment
- Much smaller and lighter, easily moveable, and trainable to perform specific tasks

Robot/Co-bot installations


 Humans and co-bots offer a unique level of skill, which results in manufacturing products far better and faster

Human Safety Validation

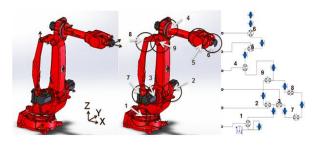
- Essential to carry out a risk assessment
- Annex G in EN ISO 10218-2 for industrial robot
- ISO/TS 15066 annex A for collaborative robots

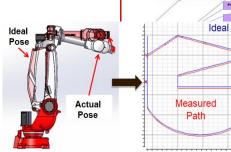
Body Region			Quasi-Static Contact	
		Specific Body Area	Peak Pressure p _s [N/cm2]	Force [N]
Hands and fingers	17	Forefinger pad D	298	135
	18	Forefinger pad ND	273	
	19	Forefinger end joint D	275	
	20	Forefinger end joint ND	219	
	21	Thenar eminence	203	
	22	Palm D	256	
	23	Palm ND	260	
	24	Back of the hand D	197	

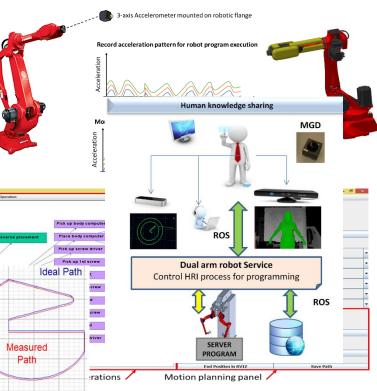
Digital Solutions for Robotics

in

Manufacturing

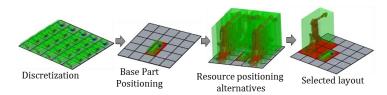

Applications (1/3)


Cooperating robots


- 1. Robot to human industrial robots
- 2. Robot to robot
- 3. Dual arm robot

Performance - Accuracy

- 1. Robot models for simulation
- 2. Robot models for control



Applications (2/3)

Planning of Human robot shared tasks

- 1. Task simulation
- 2. Allocation and scheduling between human operators and robots

AR based human robot collaboration

- 1. Visualization of cooperative tasks
- 2. Robot trajectory visualization
- 3. Alerts and safety related

Applications (3/3)

Line design

- 1 Task simulation
- 2. Allocation and simulation of tasks

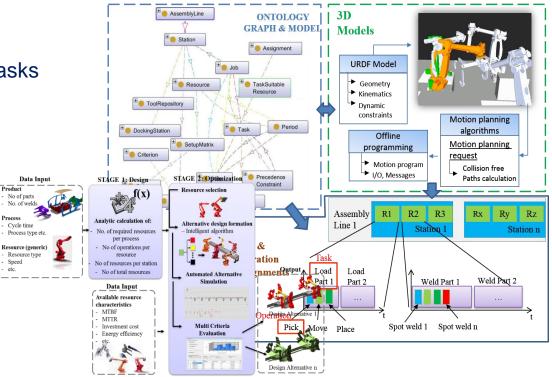
Product

Process

Cycle time

Speed

etc.


No of parts No. of web

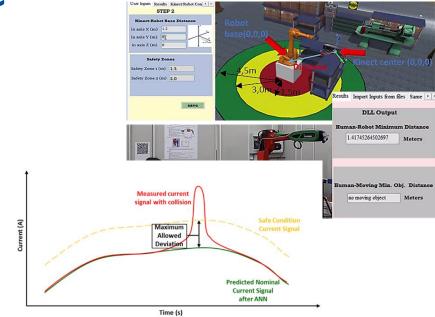
Control software

- Control architecture 1.
- 2. Systems integration
- 3. Offline programming

Logistics

- 1 Simulation
- 2 Performance assessment

Examples

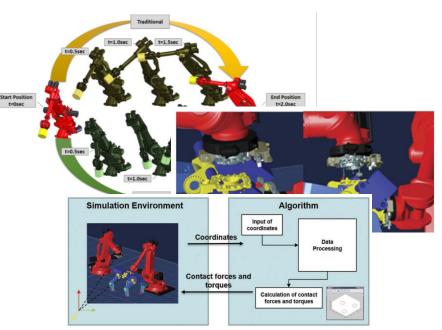

Safety assessment in HRC

Vision system

- Collision Risk assessment
- Proactive safety strategies applied

Power and Force Limiting

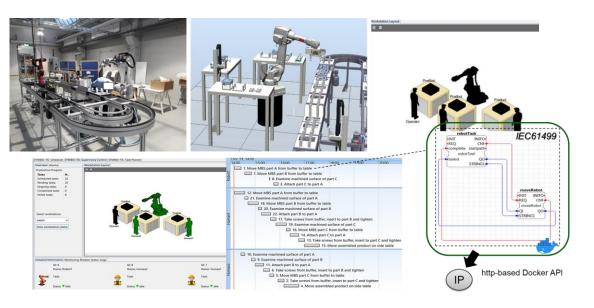
- Force detection strategy using current and position values
- Neural Network for predicting robot behavior


Nikolakis, N., Maratos, V., & Makris, S. (2019). A cyber physical system (CPS) approach for safe humanrobot collaboration in a shared workplace. Robotics and Computer-Integrated Manufacturing, 56(October 2018), 233–243. https://doi.org/10.1016/j.rcim.2018.10.003

Aivaliotis, P., et al. "Power and force limiting on industrial robots for human-robot collaboration." Robotics and Computer-Integrated Manufacturing 59 (2019): 346-360.

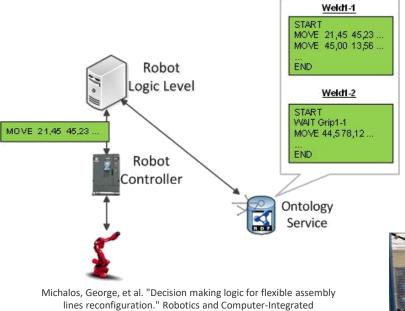
Modelling & Simulation

- Motion planning
 - For optimizing energy consumption
 - Acceleration profiles
 - Simulation and motion execution update
- Automated tool exchange process
 - Cooperating robots
 - Contact forces and torques
 - Model based automation of the process


Pastras, Georgios, Apostolos Fysikopoulos, and George Chryssolouris. "A theoretical investigation on the potential energy savings by optimization of the robotic motion profiles." Robotics and Computer-Integrated Manufacturing 58 (2019): 55-68.

Aivaliotis, Panagiotis, George Michalos, and Sotiris Makris. "Cooperating robots for fixtureless assembly: modelling and simulation of tool exchange process." International Journal of Computer Integrated Manufacturing 31.12 (2018): 1235-1246.

Assembly planning & control


- Virtual station
- Semi-automated CADbased assembly planning
- Dynamic Scheduling
- End-to-end integration for automated assembly

Nikolakis, N., Senington, R., Sipsas, K., Syberfeldt, A., & Makris, S. (2020). On a containerized approach for the dynamic planning and control of a cyber - physical production system. Robotics and Computer-Integrated Manufacturing, 64(December 2019), 101919. https://doi.org/10.1016/j.rcim.2019.101919

Unit Level: Local Autonomous Decision Making

Manufacturing 37 (2016): 233-250.

- Local coordination
- Monitoring operations
- Main tasks:
 - Automated robot program generation, retrieval and execution
 - ✓ Gripper exchange coordination

Challenges

- High cost of integration/acquisition
- Lack of standards
- Inflexibility
- Balance of speed and safety
- Enabling technologies (sensing, perception, gripping) need to improve

Outlook

- Increasing use
- Use of simulation tools for closing the gap between conceivability and

installation/execution

- Simpler integration through industrial connectors, I/Os, communication
- Interactive/Intuitive interfaces facilitating programming and use

RIS Industry 4.0 Hubs

Robots & Co-bots

Thank you!

EIT Manufacturing is supported by the EIT, a body of the European Union

27 May 2021