

RIS Industry 4.0 Hubs

Predictive analytics/ maintenance & industrial applications

EIT Manufacturing is supported by the EIT, a body of the European Union

27 May 2021

Maintenance strategies

Predictive maintenance in steel production industry

> Application in steel part production industry

- Data-driven predictive analytics
- Model based predictive analytics

Maintenance strategies

- Reactive maintenance
- Preventive maintenance
- Predictive maintenance

- Repairs before machine's breakdown
- Breakdown can not be predicted
- Wasting machine's operational life
- No cost savings

Predictive maintenance:

- Breakdown prediction
- Avoid unnecessary maintenance activities
- Save cost
- Optimal exploitation of components' lifecycle

Predictive maintenance

- Data-driven predictive analytics
 - Al and Machine Learning(ML)
 - Neural Networks

- Model based predictive analytics
 - Mathematics/physics models

$$W=\int\limits_{f_{a}}^{f_{b}}G_{FF}\left(f
ight)df+\int\limits_{f_{a}}^{f_{b}}G_{TT}\left(f
ight)df-\int\limits_{f_{a}}^{f_{b}}\left|G_{TF}\left(f
ight)
ight|df$$

$$E\left(rac{dW}{dN}
ight) = rac{d\overline{W}}{dN} pprox rac{\Delta W}{\Delta N} = rac{\Sigma W}{N_t}$$

$$N = \left \lfloor rac{W_p - W_N}{\left (rac{d \overline{W}}{d N}
ight)
ight |_{N = N_t}}
ight
floor$$

VDL-WEW case study:

Maintenance activities in a highly automated trailing arm production line – Predicting and scheduling the replacement of the coated segments of the machine

Preventive maintenance

weaknesses:

- Interruptions in the production process
- Reduced productivity
- Unnecessary maintenance
- Machine's breakdown

Predictive maintenance in steel production industry

Problem Definition

- The scope of the current approach is the real-time prediction of the Remaining Useful Life (RUL) of the coating segments in a hot rolling mill.
- The segments degrade due to forces, friction and high temperatures during the process.
- The coating thickness cannot be measured during production an indirect measurement must be applied to indicate their wear.

Hot Rolling Mill

- The rolling mill is composed of two rolling cylinders
- The lower rolling cylinder has a fixed position and only the upper can move linearly
- The segments have a wear-resistant coating that degrades over time.

Predictive maintenance in steel production industry

Motivation

Data collection

- Enabling Predictive Maintenance (PdM) for the coating segments of a hot rolling mill machine, through estimating in real-time their RUL.
- Monitoring the wear stage of machine components can lead to improved scheduling of maintenance activities.
- The occurrence of unscheduled maintenance can introduce costly delays and breakdowns.

Segment Bottom Segment Top Surface Cylinder Hydraulic A Cylinder Hydraulic B Timestamp Surface Temperature Temperature (Celsius Degrees) Force (kilonewtons) Force (kilonewtons) (Celsius Degrees) 2020-01-22T09:26:09 [189, 189, ..., 102] [548, 549, ..., 90] $[-29, -16, \ldots, -67]$ [15, 3, ..., -30] 2020-01-22T09:26:37 [262, 260, ..., 158] [542, 540, ..., 527] $[-43, -49, \ldots, -58]$ $[-18, 25, \ldots, -24]$ $[-46, -67, \ldots, -61]$ $[-18, -9, \ldots, -24]$ 2020-01-22T09:27:03 [199, 198, ..., 94] [550, 550, ..., 95] 2020-01-22T09:27:31 [256, 251, ..., 147] [548, 548, ..., 496] $[-31, -17, \ldots, -58]$ $[-2, 20, \ldots, -34]$ [-46, -27, ..., -61] 2020-01-22T10:28:43 [191, 187, ..., 101] [550, 550, ..., 93] [-21, -6, ..., -30] [-46, -21, ..., -60] 2020-01-22T10:29:11 [260, 256, ..., 157] [544, 543, ..., 536] $[-21, -5, \ldots, -24]$ [-15, 13, ..., -18] 2020-01-22T10:29:37 [197, 195, ..., 103] [550, 550, ..., 95] $[-58, -31, \ldots, -61]$ 2020-01-22T10:30:05 [259, 252, ..., 152] [550, 550, ..., 511] $[-49, -24, \ldots, -58]$ $[-21, -11, \ldots, -34]$ 2020-01-22T10:30:33 [197, 194, ..., 103] [550, 550, ..., 496] $[-16, -18, \ldots, -61]$ [12, 14, ..., -36]

Approach - Overview

 Sensor data for monitoring different parameters of the production machine

 LSTM-autoencoders training for classification of incoming data to different operational status

 Estimation of the RUL value based on the input dataset's performance

MSE₁ MSE₂ Output MSE₃ A'_3 A'n A'_2 A'_1 time-series sequence LSTM LSTM LSTM LSTM MSE_n Decoding LSTM layer Encoded features Encoding LSTM layer LSTM LSTM LSTM LSTM Accuracy rate (%) = $\frac{1}{n} \sum_{i=1}^{n} MSE_i$ Input A_3 A_1 A_n A_2 time-series sequence Timesteps Input multivariable signal with x_features -----Tue Sep 24 00:00:00 EEST 2019 Tue Sep 24 00:00:10 EEST 2019 Timestamps

Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders. Sensors **2021**, 21, 972. https://doi.org/10.3390/s21030972

Data-driven predictive analytics

Architecture

- 3 LSTM-autoencoders
- 3 Labels:
 - "initial"
 - "Intermediate"
 - "Bad"
- 3 Accuracy rates

Data-driven predictive analytics

Labeling

Results

Historical Maintenance Records			Accuracy Rates (%)		
Equipment State	Dates	Initial	Intermediate	Bad	
Initial	2019-12-24 T 01:01:49-2019-12-25 T 02:42:55	90.09%	83.71%	85.51%	
Intermediate	2020-01-10 T 00:38:54-2020-01-10 T 23:01:24	73.42%	82.28%	73.42%	
Bad	2020-01-13 T 00:05:47-2020-01-13 T 23:38:20	82.43%	86.74%	91.21%	
Initial	2020-02-20 T 00:46:49-2020-02-21 T 22:38:45	96.09%	72.91%	63.44%	
Intermediate	2020-02-25 T 01:20:54-2020-02-26 T 03:46:30	75.31%	94.80%	80.15%	
Bad	2020-03-01 T 01:53:56-2020-03-01 T 21:37:48	92.54%	82.59%	81.55%	
Initial	2020-03-02 T 01:00:14-2020-03-02 T 23:15:53	93.22%	89.10%	88.05%	
Intermediate	2020-03-08 T 00:10:24-2020-03-08 T 22:46:33	70.31%	87.80%	80.15%	
Bad	2020-03-16 T 09:13:47-2020-03-16 T 21:37:48	89.65%	71.23%	70.41%	

Results

Mounted	Unmounted	Cause	Suggested Unmounted Date	Days Gained
2019-12-23	2020-01-14	Broken	2020-01-13	-
2020-02-19	2020-03-02	Preventive maintenance	2020-03-04	approx 3
2020-03-02	2020-03-16	Preventive maintenance	2020-03-18	approx 5

Approximately 96 more days of life

22.22% reduction in preventive stoppages

- Products charge the working tools with an excitation dynamic energy that causes wear.
- The working tools have a maximum embodied energy capacity that can withstand until they break or require replacement.
- After a product is processed, their remaining embodied energy capacity decreases.

Anagiannis, I.; Nikolakis, N.; Alexopoulos, K. Energy-Based Prognosis of the Remaining Useful Life of the Coating Segments in Hot Rolling Mill. *Appl. Sci.* **2020**, *10*, 6827. https://doi.org/10.3390/app10196827

Excitation Energy to each Cylinder, according to Bendat & Piersol (Bendat and Piersol, 1986), per processed product:

$$W = \int_{f_a}^{f_b} G_{FF}(f) df + \int_{f_a}^{f_b} G_{TT}(f) df - \int_{f_a}^{f_b} |G_{TF}(f)| df$$

where:

- F: force time-series
- T: segment temperature time-series
- G(f): Welch based PSD
- [fa, fb]: frequency range (bandwidth)

Model based predictive analytics

 Mean Rate of Wear Progress:

$$E\left(\frac{dW}{dN}\right) = \frac{d\overline{W}}{dN} \approx \frac{\Delta W}{\Delta N} = \frac{\Sigma W}{N_t}$$

 RUL Prediction (N remaining products to produce):

$$N = \left| \frac{W_p - W_N}{\left(\frac{d\overline{W}}{dN} \right) \Big|_{N = N_t}} \right|$$

Interval Prediction:

$$\begin{bmatrix} N-\Delta N, N+\Delta N \end{bmatrix} , \quad N-\Delta N > 0 \\ \begin{bmatrix} 0, N+\Delta N \end{bmatrix} , \quad N-\Delta N \leq 0$$

Prediction confidence:

The confidence of the predicted RUL interval in remaining products to proceed is estimated via **Maximum Likelihood Estimation (MLE)**.

Implementation:

Developed standalone app for running the RUL estimation in real time, providing GUIs indicating the current production, the RUL estimation, as well as the prediction Interval confidence.

> Pieces produced: 7003 Remaining: 1671~1751 pieces Confidence: 75.8 % (Very High)

Model based predictive analytics

- The proposed approach was tested through 9 Monte Carlo prediction simulations.
- RUL Prediction accuracy was evaluated via Mean Absolute Percentage Error.
- The prediction simulation results indicate a prediction accuracy higher than 97%.
- The proposed method is robust against product type variations and accurate enough to be used in industrial practice.

RIS Industry 4.0 Hubs

Predictive analytics & industrial applications Thank you!

EIT Manufacturing is supported by the EIT, a body of the European Union

27 May 2021